Sunday, December 16, 2012

Standard Deviation Percentage

 The standard deviation is  most commonly used term in statistics. The relative standard deviations to consider the accuracy of compute the standard deviation of given analytical data. The Standard deviation is the square root of average squared deviation from the mean.

Standard Deviation  :

Standard  deviation is the arithmetic mean of all the deviation of observations taken about their mean

Standard equation When each of the given terms has frequency 1  
Let x1, x2, …, xn be the n given observations and let M be their mean. Then, the variance σ2 is given by
σ2 =[ (x1  M)2 + (x2  M)2 + … + (xn – M)2 ] / n = Σ d2i /n,
where the deviation from the mean, di = (xi  M)
And, therefore, the standard deviation σ is given by
σ = + √{Σ(xi  M)2/n} = √Σ di2/n, where di = (xi – M)

Formula to Calculate Percentage of Standard Deviation:


When frequencies of the variable are given
In this case, the variance is given by
σ2 = (Σ fi di2 fi) & S.D.= σ = √(Σ fi di2)/n
we proceed in same way  as we have done earlier
but here each di is multiplied by correponding fi
and apply the above formula
and we get standard deviation for frequency distribution

Ex :  Find the variance and standard deviation from the following frequency distribution table:

Variable (xi)246810121416
Frequency (fi)445158545

Sol :  We have

Variable
xi
Frequency
fi
fi xi_ 
di = (xi – M)
di2fi di2
248– 749196
44`16–     525100
6530–  3945
815120–  1115
10880118
125603945
14456525100
16580749245
Σ fi = 50Σ fi xi = 450Σ fi di2 = 754

... M =
450/50
= 9

... Variance, σ2 = Σ fi di2/ Σ fi = 754/50 = 15.08
And, standard deviation, σ = √15.08 = 3.88

Percentage of standard deviation:

Percentage of standard deviation or relative standard deviation = (standard deviation / mean)  x 100.

Calculating Percentage of Standard Deviation:

Calculate the variance as well as the standard deviation percentage of the given table of the data:

xi7101216182528
fi251310641

Solution:
Presenting the data in tabular form, we get

xififixi(xi - mean)(xi - mean)2fi(xi - mean)2
7214-864128
10550-525125
1213156-39117
16101601110
1861083954
25410010100400
2812813169169
416161003


Here, N= 41 and `sum_(i=1)^7` fixi  = 616.

Therefore, mean = (`sum_(i=1)^7` fixi ) `-:` N = (1/41) x 616   =  15



and                `sum_(i=1)^7`fi(xi - mean)2   = 1003.

Hence, Variance(σ2)  =  (1/ N) `sum_(i=1)^7` fi(xi - mean)2  =  (1/41) x 1003   =  24.46

and

Standard deviation (σ) = `sqrt(24.46)`   =  4.94

Relative standard deviation or standard deviation percentage = (σ / mean) x 100  =  (4.94 / 15 ) x 100     =   32.9%

No comments:

Post a Comment